Novel Heating-Induced Reversion during Crystallization of Al-based Glassy Alloys
نویسندگان
چکیده
Thermal stability and crystallization of three multicomponent glassy alloys, Al86Y7Ni5Co1Fe0.5Pd0.5, Al85Y8Ni5Co1Fe0.5Pd0.5 and Al84Y9Ni4Co1.5Fe0.5Pd1, were examined to assess the ability to form the mixture of amorphous (am) and fcc-aluminum (α-Al) phases. On heating, the glass transition into the supercooled liquid is shown by the 85Al and 84Al glasses. The crystallization sequences are [am] → [am + α-Al] → [α-Al + compounds] for the 86Al and 85Al alloys, and [am] → [am + α-Al + cubic AlxMy (M = Y, Ni, Co, Fe, Pd)] → [am + α-Al] → [α-Al + Al3Y + Al9(Co, Ni)2 + unknown phase] for the 84Al alloy. The glass transition appears even for the 85Al alloy where the primary phase is α-Al. The heating-induced reversion from [am + α-Al + multicomponent AlxMy] to [am + α-Al] for the 84Al alloy is abnormal, not previously observed in crystallization of glassy alloys, and seems to originate from instability of the metastable AlxMy compound, in which significant inhomogeneous strain is caused by the mixture of solute elements. This novel reversion phenomenon is encouraging for obtaining the [am + α-Al] mixture over a wide range of high temperature effective for the formation of Al-based high-strength nanostructured bulk alloys by warm working.
منابع مشابه
Composition-dependent metallic glass alloys correlate atomic mobility with collective glass surface dynamics.
Glassy metallic alloys are richly tunable model systems for surface glassy dynamics. Here we study the correlation between atomic mobility, and the hopping rate of surface regions (clusters) that rearrange collectively on a minute to hour time scale. Increasing the proportion of low-mobility copper atoms in La-Ni-Al-Cu alloys reduces the cluster hopping rate, thus establishing a microscopic con...
متن کاملGlass-Forming Ability and Early Crystallization Kinetics of Novel Cu-Zr-Al-Co Bulk Metallic Glasses
In recent years, CuZr-based bulk metallic glass (BMG) composites ductilized by a shape memory B2 CuZr phase have attracted great attention owing to their outstanding mechanical properties. However, the B2 CuZr phase for most CuZr-based glass-forming compositions is only stable at very high temperatures, leading to the uncontrollable formation of B2 crystals during quenching. In this work, by in...
متن کاملMicrostructure and Mechanical Properties of Cold Rolled AISI 304L and 316L Austenitic Stainless Steels during Reversion Annealing
Microstructural evolutions during annealing of cold rolled AISI 304L and AISI 316L stainless steels were studied. Cold rolled AISI 304L alloy was fully martensitic but cold rolled AISI 316L alloy was partially martensitic due to the higher stability of the austenite phase in the latter. During continuous heating to elevated temperatures, the complete reversion of strain-induced martensite at 75...
متن کاملCrystallization Behavior and Structural Stability of Zr_{50}Cu_{40}Al_{10} Bulk Metallic Glass
We have investigated the origin of significantly high thermal stability of Zr50Cu40Al10 metallic glass and its crystallization behavior as compared to Zr70Cu20Al10 and Zr70Cu30 glassy alloys, by differential scanning calorimetry (DSC), x-ray diffraction (XRD) and resonant ultrasound spectroscopy (RUS) techniques. It was found from XRD and DSC analyses that (i) constituent atoms in Zr50Cu40Al10 ...
متن کاملFormation of glassy Ti50Cu20Ni24Si4B2 alloy by high-energy ball milling
The elemental powder mixtures with a nominal composition of Ti50Cu20Ni24Si4B2 can be amorphized under high-energy ball milling. A well-defined glass transition before crystallization appears in the obtained amorphous phase during heating in a differential scanning calorimeter. Awide supercooled liquid region DTx is available to be about 57 K. Crystallization of the ballmilled amorphous phase wa...
متن کامل